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Abstract 

Vehicle emissions standards are becoming increasingly more strict as time progresses. 
Once all of the emissions devices are in their operational stage, these standards can be 
met with reasonable effort in powertrain design and calibration. However, the core of this 
system, the three-way catalyst, is non-operational until it has reached 200-350⁰C. 
Because of this, cold-start catalyst heating is extremely important in new vehicles. The 
objective of this project was to improve catalyst heating without increasing engine-out 
emissions. It was decided that the sensible heat portion of the exhaust enthalpy would be 
the best metric to judge differences between the different strategies. This is because 
catalyst-in temperatures ignore the energy flow increase with an increase in mass flow 
and exergy relates to a state that simply doesn’t exist in application. 

The two strategies tested were the deactivation of one exhaust valve and an increase in 
exhaust cam duration. While neither strategy proved to be particularly effective on their 
own, the combination of both could be a viable option for increased exhaust enthalpy and 
a minimal increase in engine-out emissions. Interestingly, the key to these changes was 
mostly due to changes in the rebreathing of the engine.
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1 Introduction 

4-stroke SI engines have been around since the late 1800s [1] and will continue to exist 
for the foreseeable future. They are fantastic energy converters in that they are scale-able, 
power dense, operate over a range of conditions, produce NVH levels that are tolerable, 
have a long service life, are relatively simple in operation, are relatively inexpensive to 
manufacture, have good source to propulsion efficiency compared to alternatives such as 
EV, and good overall emissions including criteria and non-criteria emissions. In the past, 
they have met emissions regulations set by the EPA, but these regulations are changing, 
adding complexity and cost to the manufacture of these engines. Because of this, a 
consortium hosted by the Michigan Tech Advanced Power Systems Lab (MTU APS 
Labs) that includes Borg Warner, FCA, Ford, and GM chose this catalyst light off project 
from a list for the 2017-2018 project cycle. 

1.1 Emissions 

Automotive emissions are regulated through multiple means. One of the most common of 
these is through drive cycle testing at EPA regulated test facilities. [2] Every new 
production vehicle sold in the United States must pass these tests before it is allowed to 
be sold. In the past, the emissions standards were met for SI engines by using a three-way 
catalytic converter and operating under specific control conditions. Over time, these 
regulations have become more stringent and, therefore, more difficult to meet. 

1.1.1 EPA Dynamometer Drive Cycles 

There are several different drive cycles used for light-duty vehicle emissions testing. 
Currently, there are 3 of these driving schedules that must be met. These cycles are 
performed on chassis dynamometers with professional drivers following the speed of the 
drive cycles set by the EPA standards. The first of these is the FTP, seen in figures 1 & 2. 
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Figure 1: FTP Drive Cycle [2] 

 
Figure 2: Timeline for the federal test procedure [2] 



www.manaraa.com

3 

1.1.2 Updates to Emissions Standards 

Over time, emissions standards have become more stringent and more difficult to meet. 
This has been done through 3 tiers of new emissions standards, starting in 1991. As can 
be seen in table 1, emissions in 1991 were measured in g/mi and only for 50,000 miles/5 
years and 100,000 miles/10 years. Tier 3 emissions are currently being phased in and 
must be completely met by 2025. 

These tier 3 emissions are far more stringent. For example, the most strict standard set for 
NMOG+NOx in tier 1 was 0.91 g/mi, whereas the 2025 requirement is for the fleet 
average to meet the bin 30 requirements of 0.03 g/mi. This is a 97% reduction in 
NMOG+NOx. [3] Furthermore, there is a requirement of a 99.5% reduction in HC output 
across all vehicles, regardless of the bin they fall into. The reduction in CO is not as 
drastic, but it still ranges 0-76%, depending on the bin the vehicle is in. In addition, these 
requirements must be warrantied to be met for 3-times as long. (50,000 to 150,000 miles) 
All of these requirements can be seen in detail in tables 1 and 2. [4] 

Meeting these new requirements has been difficult, but manageable in the past. However, 
reductions of 97% or more in exhaust constituents means that the systems must be 
functioning perfectly from startup. A single misfire or the catalyst taking too long to 
reach operational temperature will cause an immediate emissions failure of a new 
vehicle. 
 

Table 1: Tier 3 emissions standards, FTP for 150,000 miles [4] 
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Table 2: Tier 1 emissions standards, FTP for 50,000 mi/5 years [4] 

 

1.2 Current Methods for Meeting Emissions Standards 

1.2.1 Catalytic Converter Operation 

A three-way catalyst is relatively (90+%) efficient at converting CO, HC, and NOx to 
CO, H2O, and N2. However, this is only the case over a narrow range of operation. As 
can be seen in figure 3, lean operation leads to a significant decrease in the conversion 
efficiency of NOx. (Note, the x-axis on this plot should be lambda, not AFR.) This is 
because the catalyst saturates with oxygen, and so it becomes less reactive to the NOx, 
limiting its ability to convert the NOx to N2 and O2. However, fuel-rich mixtures lead to 
a similar, but opposite, problem. The catalyst becomes saturated with carbon, and there is 
a shortage of oxygen for that carbon to react with. Because of this, the engine is run in a 
switching pattern around ℷ = 0.998. [5] 

 
Figure 3: Three-way catalyst conversion efficiency as a function of lambda [6]. X-axis 
should be “Lambda, not Air/Fuel Ratio”  



www.manaraa.com

5 

This operating metric is only useful once the catalyst is at the temperature needed for 
these reactions to start. As you can see in figure 4, the catalyst only begins to be effective 
at converting CO and HC at around 300⁰C. For it to efficiently convert HC it must be 
heated to over 400⁰C. In other words, the catalyst must be heated from an ambient 
temperature of 25⁰C to its 400⁰C operational temperature. The catalysts themselves are 
rather dense with the rare metals that are in them, so the energy required to reach their 
operating temperature is very high, and to reach this energy requirement quickly the 
exhaust enthalpy and temperatures must be as high as possible. 

 
Figure 4: Conversion efficiency for CO and HC as a function of temperature for a 
catalytic converter [7] 

1.2.2 Current Catalyst Light-Off Strategies 

There are several strategies to help light the catalyst faster that have been examined in the 
past. However, each of these strategies comes with their own set of issues. These range 
from increases in some emissions to added system complexity and cost. Four of these 
will be covered in the literature review: 

1. Retarded ignition timing 
2. Electric heating elements 
3. Exhaust afterburner 
4. Exhaust burner 
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1.3 Motivation 

As emissions become more stringent, passing the requirements becomes significantly 
more difficult. The industry has hit a point of diminishing returns in that the emissions 
output of modern vehicles is already so low that even one misfire on cold start will cause 
a failure. Once the vehicle is running and the catalyst is at operational temperature, it can 
act as a capacitor to absorb any inconsistencies in firing. All of this means that cold start 
emissions are now the core target of engine calibration and technologies related to 
emissions. In other words, even small improvements in this area lead to a direct 
improvement in overall emissions output. Additionally, exiting this cold catalyst state as 
quickly as possible is critical and the focus of quite a lot of research. If the exhaust 
enthalpy can be increased enough to decrease catalyst light-off time, without increasing 
engine-out emissions, this can be accomplished. 
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2 Literature Review 

2.1 Cold Start Emissions 

A very clear indication of the drastic difference in cold start emissions compared to the 
emissions produced during the warm operation of a vehicle can be seen below. In table 3, 
[8] points out a factor that correlates the emissions of a cold start to this warm operation: 

 

𝛾 =
𝐸𝐸𝑐𝑜𝑙𝑑

𝐸𝐸ℎ𝑜𝑡
 

𝐸𝐸𝑐𝑜𝑙𝑑 = cold start exhaust emissions (g/start) 

𝐸𝐸ℎ𝑜𝑡 = warmed emissions factors (g/km) 
 

(1) 

Using this factor and table 3, it can be seen that the emissions during cold start are 
equivalent to as much as 2600, 185, and 12 kilometers traveled during warm operation 
for HC, CO, and NOx, respectively. This is caused by a combination of factors, with the 
largest being that the catalyst is cold and non-functioning during this time. 

Table 3: Approximate fleet average cold-start equivalent distances gamma for Euro 4 
Stroke SI and CI vehicles [8] 

 

In [8], there is a fantastic diagram that shows the fundamental issues with cold start 
emissions. As can be seen in figure 5, the lower ambient temperature causes several 
issues at once. First, the engine is physically cold. This causes an increase in friction from 
differences in tolerances and increased oil viscosity. The increase in friction leads to a 
necessary increase in fuel energy that is being introduced into the system. This increase 
in fuel leads to a direct increase in CO2. Second, the viscosity of the fuel is greater, 
leading to poor atomization and reduced homogeneity of the mixture. Third, the cylinder 
wall temperatures are lower, increasing flame quenching. Fourth, The lower intake air 
temperatures reduce the flame speed. The net result of the last 3 causes is that the 
combustion efficiency is reduced, leading to an increase in HC and CO emissions. This 
further necessitates the increase in fuel energy input, resulting in increased CO2. 
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Figure 5: Cause-and-effect diagram of the fundamental difficulties of cold-start operation 
at low ambient temperatures [8] 

To reiterate the drastic difference in HC for a cold start one final time, figure 9, from [9], 
shows the difference in diluted PPM for cold start HC emissions compared to hot start 
HC emissions. Again, while all of the other conditions cause an increase in emissions, the 
most significant contributor is the fact that the catalyst is too cold to function. The cold 
start line on this plot is with a cold catalyst, whereas the hot start line is with a warm 
catalyst that is operating correctly. For reference, this data was taken during the first 160 
seconds of the FTP drive cycle on a BMW 3 series. 

 
Figure 6: HC post catalyst emissions comparison between cold and hot start [9] 
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2.2 Catalyst Light-Off 

2.2.1 Retarded Ignition Timing 

The standard method used for catalyst light-off is to retard ignition timing. This does 
several things at once that lead to an increase in exhaust enthalpy. First, it makes the 
engine less efficient, so mass flow increases. Second, combustion is potentially still 
happening at EVO, leading to continued burn in the exhaust. Third, there is less 
expansion work done in the cylinder, so temperatures are potentially higher at EVO. [10] 
The disadvantage, from an emissions standpoint, of this method is that HC emissions are 
increased for the duration of the catalyst light-off strategy. [10] Additionally, the engine 
is extremely inefficient with this late combustion phasing, and so there is a penalty to the 
vehicle’s mileage and overall efficiency as well. 

2.2.2 Electric heating elements 

Another method that has been examined, but not commonly implemented in production 
vehicles is the use of electric heating elements. The idea behind this is to use an electric 
heating element inside the catalyst to preheat the catalyst before startup or to help heat 
the catalyst faster after startup. [11] There have even been designs that pass reasonable 
durability requirements. However, while this method does improve light off times and, 
therefore, emissions, it comes with its own set of disadvantages. The first of which is that 
it requires a source that is capable of outputting 1-3 kW of power for a relatively long 
period of time. 

Assuming a heating time of 30 seconds at 2 kW, an environmental temperature of 0⁰F, 
and that the battery started at 12V and drained linearly to 7.2V for the duration of the 
heating time, the battery would need an additional cold cranking amp rating of 
approximately 210 CCA on top of the original battery size. [12] [13] Assuming a 
common battery size of 600 CCA, that is a 35% increase in battery reserve, leading to 
increased packaging issues, increased vehicle mass, and increased cost to manufacture. 
This sort of drain on a typical car battery would lower the charge to the point that it 
would be difficult to properly start the engine or the size of the batteries in vehicles 
would have to increase significantly. 

2.2.3 Exhaust Afterburners/Burner 

2.2.3.1 Afterburner 

There have been multiple projects focused on the use of exhaust afterburners or burners. 
The objective with these is to introduce a fuel and air mixture into the exhaust before that 
catalyst that can be burned for the sole purpose of heating the catalyst to operational 
temperature. There are two fundamental versions of this that can be implemented. 
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The first, an exhaust afterburner, was implemented by [14] in 1992 and followed up by 
[9] in a comparison between technologies in 1994. This method requires the addition of a 
secondary air system, an afterburner chamber, and an ignition source to the exhaust. 
During startup, the engine operates under extremely fuel-rich (ℷ=0.55) [9] conditions. 
This excess fuel mixes in the afterburner chamber with the air introduced by the 
secondary air system and is ignited. The energy released by this burn is then fed directly 
into the catalyst in an effort to heat it rapidly. This calibration for the afterburning 
chamber can potentially be switched off after 20 seconds [9] of operation due to the 
significantly higher heating capacity of the unit. This method is very similar to the one 
used in the 70’s and 80’s secondary air injection systems, but with more control via a 
more advanced EFI system and the addition of the burn chamber to the exhaust.  

However, this method comes with several drawbacks. Because the engine must be 
operated in such a rich operating zone, idle stability may be affected. This method also 
becomes unpredictable and difficult to regulate after repeated starts at short intervals due 
to the nature of the engine running so rich. Additionally, this method is unusable at any 
operating condition besides idle due to the extremely rich mixture and its inherent 
instability under part load conditions. 

2.2.3.2 Burner 

The second, an exhaust burner, was examined by [9] and was found to have many of the 
benefits of the afterburner system, without as many drawbacks. This system is actually 
very similar to the afterburner system except for the addition of a fuel source. Because 
the fuel has a dedicated source, the engine can be operated using much more favorable 
conditions, namely much closer to stoichiometric fuel/air mixtures. The general concept 
of introducing fuel and air in the exhaust and igniting it directly in front of the catalyst is 
the same as the afterburner system. The addition of the fuel source in the exhaust also 
means that the engine can be used in conditions outside of idle without any significant 
penalties to combustion. 

Both of these systems, however, have a few major drawbacks. The addition of the extra 
equipment means that the systems add complexity to the vehicle and the cost to 
manufacture them is higher. Additionally, there were safety and durability concerns that 
still needed to be addressed before these systems could be considered for use in a 
production vehicle. 

 

2.3 Valve Activation 

[15] performed a similar study to this one in 2012. However, the engine in their study 
was of a much higher geometric compression ratio, was operated at 1.7 bar IMEP at 
1,200 RPM, and used split injection. In [15] they expected an increase in exhaust 
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temperature and a decrease in HC emissions with an earlier EVO and a similar EVC. 
These would be helpful for both catalyst light-off as well as meeting emissions. There 
was, however, concerns about an increase in NOx from a theorized increase in peak 
temperatures from the increase in charge mass required to meet the load requirements. 
The end result of the earlier EVO was that the catalyst heating was directly related to the 
difference in charge mass, HC increases with earlier EVO, and earlier EVO leads to a 
decrease in NOx. 

They also deactivated one of the exhaust valves. The theory in [15] was that the decrease 
in the wetted port area, the surface area which the exhaust flow stream has contact with, 
would lead to a decrease in heat transfer to the port walls. This decrease in heat transfer 
would lead to an increase in EGT and, therefore, higher exhaust enthalpy. Through the 
experiments in [15], it was observed that the EGTs did, in fact, increase with the smaller 
port area and this was at a lower specific fuel consumption. It was also observed that the 
emissions tradeoff between HC and NOx was more acceptable in that the HC emissions 
were reduced, but the increase in NOx was lower at earlier EVO. 

2.4 Crevice HC Emissions 

An additional theorized advantage to switching to one valve operation was the decrease 
in crevice volume from the deactivated exhaust valve. Heywood says that the crevice 
volume of the head gasket and valve seats is negligible in [16] compared to the piston 
crevice regions. However, they later test for the differences caused by alterations of the 
head gasket, coming to the conclusion that they are, in fact, important in factoring in 
crevice volume. Adding to that the fact that this study was performed in 1994 when 
regulations were far more lax than they are today, and the difference in crevice volume 
caused by deactivating a valve became relevant for this project again. 
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3 Goals and Objectives 

The goal of this project is very simple: 

1. Increase the rate of exhaust enthalpy to decrease catalyst light-off time 
2. Maintain or decrease engine-out HC 
3. Maintain or decrease engine-out CO 
4. Maintain or decrease engine-out NOx 
5. Maintain or decrease engine-out PM 

The objective was to see how the different valve activation strategies affected these 
outputs. While [15] was a great study on these effects, there are several different aspects 
of this project that were not published in the paper. The first of these is the use of a more 
conventional valvetrain. The “UniAir” technology used in [15] is still expensive and 
relatively difficult to implement in a vehicle compared to the valvetrain used in this 
project. Second, the compression ratio in [15] was 13:1 which is on the higher end of a 
modern SI engine. The compression ratio of the test bed in this project of 9.2:1 is fairly 
standard for a modern turbocharged engine. Third, the load used in [15] was only 170 
kPa IMEP, which is far short of the load in this project of 250 kPa NMEP; a more 
realistic load for the operation of accessories on a 2.0 L engine in a modern vehicle. 
Lastly, the engine used for [15] was a single cylinder, whereas the engine in this project 
was a multi-cylinder configuration which was also more realistic for the application. 
Additionally, [15] did not include a detailed analysis of the different effects that each 
configuration was causing. 

3.1.1 Test New Hypothesis 

3.1.1.1 Valve Deactivation 

It was hypothesized that with a decrease in the wetted area of the exhaust port there 
would be less heat transfer in the port. This would, in theory, lead to higher EGTs and, 
assuming roughly the same efficiency, a correlated increase in exhaust enthalpy. 

3.1.1.2 Longer Exhaust Cam Duration 

The hypothesis for a longer cam duration was three-fold. First, the earlier EVO would 
allow for less expansion work to be performed, increasing EGTs, which would increase 
exhaust enthalpy. Second, this decrease in expansion work would lead to an increase in 
mass flow requirements to meet load, increasing exhaust enthalpy. Third, the later EVC 
would lead to greater rebreathing (backflow from the exhaust stream back into the 
cylinder), which would result in lower HC emissions. 
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4 Research Methodology 

This project was performed through a combination of experimentation and GT-Power, a 
1-D computer simulation using a production model of the LHU engine provided by GM. 
Every point tested was simulated, except for the latest combustion phasing because the 
true combustion phasing was unknown for these points due to a significant portion of the 
burn occurring in the exhaust. 

Experimentation is the only way to truly observe the results of the hardware changes 
made. There are simply too many variables involved to accurately simulate the results of 
this experiment. This is especially true with topics involving heat transfer, emissions, or 
combustion variation. However, simulation was used to develop the new camshafts as 
well as to better understand what was happening inside the engine leading to the observed 
results. 

Because the purpose of this project was to test the effects of each of these different 
configurations on the portion of cold-start that is for catalyst light off, the flair at the 
initial start was ignored and the engine was operated at a steady state. By running steady 
state, the number of variables in testing is also significantly lessened. This chosen 
condition represents the time from 3 to 15 seconds in figure 7. 

 
Figure 7: Cold start warmup example [17] 
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4.1 Camshafts 

Testing included 3 different exhaust camshafts. The first of these was the production 
cam, PN 12629743. The second cam tested was a mid-duration camshaft with a 35⁰ 
increase in duration. Lastly, there was a long duration camshaft with a 60⁰ increase in 
duration. 

4.1.1 Mid-Duration 

When designing the mid-duration camshaft, there were several objectives: 

1. Maintain opening and closing profiles 
2. Push EVC as late as possible 
3. Determine the duration increase that provided maximum output at 6,000 RPM to 

match and increase the engine’s original operating condition for peak power. 

4.1.1.1 Maintaining Opening and Closing Profiles 

The fundamental objective behind retaining identical opening and closing profiles was to 
ensure the results were only from the change in duration. Second, by using the same 
profiles, there should be no ill effects on valvetrain dynamics that could cause other 
issues. However, the dynamics of the valvetrain were far less critical than ensuring the 
results were only from the duration increase as the camshaft was only going to be used 
for a short period of time and at low speeds. 

4.1.1.2 Pushing EVC As Late As Possible 

Pushing EVC as late as possible was desired to help maximize the potential for 
rebreathing. This rebreathing would, in theory, allow for the recapture and burning of HC 
in the exhaust. This backflow is caused by the lower cylinder pressures of the downstroke 
just before the exhaust valve closes. This pressure delta across the exhaust valve causes 
the closest exhaust gases to reenter the cylinder. Figure 8 shows a sample of this 
rebreathing at different angles of exhaust camshaft retard. 
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Figure 8: Mass-scaled HC flow at exhaust port septum for fully retarded stock camshaft 
and dual valve operation at various CA50s 

4.1.1.3 Maximum Output At 6,000 RPM 

The cam profile was also designed to allow for the maximum engine output at 6,000 
RPM. Ideally, the longer duration could be used for both startup and maximum output 
operation, helping to justify the additional hardware required for the multi-lobe cam. 

4.1.1.4 Design Process 

The first stage of the actual design process was to use the valve lift profiles provided in 
the GT Power to design and simulate the increased duration on the exhaust cam. To do 
this, the lobe was split at peak lift and the dwell was increased in 10⁰ increments up to an 
increase of 100⁰. A few examples of the valve lift profiles that were simulated can be 
seen in figure 9. 
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Figure 9: Valve lift profile comparison 

There is a physical limit to how late EVC can be. Too late of an EVC leads to valve-to-
piston contact, which will quickly destroy the engine. The initial data for this clearance 
was measured on a previous project with the stock camshafts in their fully retarded 
position. From that initial data, figure 10 was developed, allowing the determination of 
how late of an EVC was considered acceptable. The clearance of 1.5 mm at an EVC 
increase of 15⁰ was considered to be too small if anything were to cause some instability 
in the valvetrain, so a 10⁰ increase was chosen. 
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Figure 10: Valve to piston clearance from later EVC cause by longer duration camshaft 

Once the camshaft centerlines were determined, the simulations in GT-Power were run. 
The NMEP produced by each of the camshafts tested can be seen in figure 11. Based on 
these simulations, it was concluded that the best choice for producing peak power was an 
increase of 35⁰ CA. This duration increase and the corresponding difference in the cam 
profile is directly compared with the stock camshaft in figure 12. 
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Figure 11: NMEP at 6,000 RPM with different max lift dwell duration increases 

 
Figure 12: Cam lift profile comparison between stock exhaust camshaft and mid duration 
camshaft 
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As further evidence that this new cam duration is useful for power at more than just peak 
operating speed, a group of simulations was also performed to compare the 35⁰ camshaft 
to the stock camshaft at 3 different operational speeds of 4,000, 5,000, and the 6,000 
RPM. As seen in figure 13, there is a clear advantage in power output at all of the higher 
speeds at which the engine could be operated. 

 
Figure 13: NMEP comparison between final mid duration camshaft design and stock 

camshaft at different engine speeds 

4.1.2 Long Duration 

After the development process of the mid-duration camshaft, the longer duration cam was 
a much faster and more straightforward process. The only constraint with this cam was 
that the engine was still able to meet the engine load requirement of 250 kPa NMEP. To 
maintain the valve-to-piston safety margin discussed in 4.1.1.4, the EVC for the longer 
duration camshaft was matched to that of the mid-duration cam. With these two 
parameters determined, GT-Power was used again to find the duration with the earliest 
EVO possible while still maintaining load. These GT-Power simulations showed that an 
increase of up to 100⁰ did not cause any issues, and the engine was still able to meet load. 
A 60⁰ increase in duration was chosen, as it would position EVO at 40⁰ ATDC. This is 
within the target CA50 range, which will be addressed later. 
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The next step was to check this increase in cam duration at a more retarded cam position. 
To do this, a test, seen in figure 14, was performed with the camshaft at a position 45⁰ 
retarded from the home position with SOIs of 280⁰ and 253⁰ BTDC at 1500 RPM and 250 
kPa NMEP at ℷ=1. This was chosen as a representative point for the engine with later 
exhaust cam phasing. With the cam in this position, EVO would be at 85⁰ ATDC. Using 
the data in figure 14, it was determined that this later EVO would allow for complete 
combustion at later combustion phasing, as CA90 was at 78⁰ ATDC. These result is a 
camshaft that could theoretically place EVO anywhere from before CA50 to after a 
complete burn. 

 
Figure 14: CA90 analysis to determine long duration camshaft duration increase 

4.2 Test Matrix 

The heart of this project was to determine the effects of valve activation changes on the 
exhaust enthalpy rate and the emissions produced. With the conventional valvetrain used 
for testing, there are few options left. The first was to retard the exhaust cam 
incrementally. The second was to increase the duration of the camshaft. The final option 
was to deactivate one of the valves. Additionally, CA50 would be swept, as retarding 
spark is currently the most common method for catalyst heating, and it could easily be 
replicated on the hardware available. 

For the increase in cam duration, it was decided that the stock camshaft, a mid-duration 
camshaft, and a long duration camshaft would fit within the scope of the project and 
provide enough resolution to understand the physics behind the changes observed. For 
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exhaust cam retard, the engine used has a range of 50⁰ CA that it can retard. This was 
broken into a number of equal steps of 0, 12.5, 25, 37.5, and 50⁰ CA of retard. Again, this 
number of steps provides enough resolution to understand the physics, but still fell within 
the time allotted for the project. 

Additionally, each camshaft was run in both 1 and dual valve configurations. This was 
done to allow for a direct comparison of the effects of valve deactivation on an otherwise 
stock configuration as well as to see how the combination of cam duration and valve 
deactivation affected each other. A CA50 of 10⁰ ATDC was chosen to represent MBT 
[18] for the earliest portion of the CA50 sweep. The latest combustion phasing was 
limited by two factors, misfire and an EGT limit. Misfires are a limit because any misfire 
on startup will immediately fail emissions and it can also drastically skew the data 
collected. An EGT limit was set to avoid damaging the turbocharger or the engine. 950⁰C 
was determined to be a safe limit.  

To ensure load was met for as many points as possible, the engine was operated at WOT 
for the latest combustion phasings. If the engine was at WOT and load was met, the other 
limits of misfire and EGT were to apply. If the engine was at WOT and load could not be 
met spark advance was increased until it could be, and that was the point taken for the 
CA50 sweep. The final test matrix can be seen in table 4 below. 

 
Table 4: Project test matrix 

 

4.3 Test Procedure 

4.3.1 Testing 

At the beginning of every day of testing, 3 control points were run. The first of these was 
an all-off control point with the engine at ambient temperature before the first firing 
event. The engine and all components are room temperature, and so this is a good way to 
check for any inconsistencies in data acquisition methods. The second was a reference 
point, with both camshafts in their home positions, ℷ=1, an engine speed of 1,300 RPM 
and a load of 330 kPa NMEP at a CA50 of 8⁰ ATDC. The last control point before testing 
was a motoring point (engine off, but being spun by the dynamometer) at a MAP 
measurement of 95 kPa and 1,300 RPM. For all testing, the matrix was randomized to 

Camshaft CA50 Sweep ECCL Sweep Active Port # Test Points

Stock 

Duration
10, 30, 45,60, Misfire -2° SA or EGT 950°C

0, 12.5, 25, 37.5, 

50
1 valve, 2 valve 50

+35° 

Duration
10, 30, 45,60, Misfire -2° SA or EGT 950°C

0, 12.5, 25, 37.5, 

50
1 valve, 2 valve 50

+60° 

Duration
10, 30, 45,60, Misfire -2° SA or EGT 950°C

0, 12.5, 25, 37.5, 

50
1 valve, 2 valve 50

Total 150
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minimize trends in data. At the end of each day, the second set of control points were 
taken, including the 1,300/330 point and the motoring point. 

4.3.2 Engine Cleaning Procedures 

To help minimize the effects of carbon build-up inside the engine absorbing or desorbing 
hydrocarbons [19], a cleaner made by Wynn’s was used before testing began and before 
each cam switch procedure. This was done with the engine running at 3,000 RPM, a 
MAP of 80 kPa, and a spark advance of 36⁰ BTDC. Additionally, in-cylinder pressure 
transducers were removed and cleaned before testing began. 
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5 Experimental Setup 

5.1 Engine Test Bed 

5.1.1 Engine 

For this study, an LHU 2.0L engine was used. These engines can be found in a variety of 
GM vehicles from 2011 to 2013. This engine was chosen because it has dual cam 
phasing, direct injection, and is turbocharged; all of which are common on high-feature 
engines found in modern vehicles. All of the relevant physical dimensions can be found 
in table 5.  

Table 5: Test engine physical dimensions 

GM I4 LHU 

Bore (mm) 86 

Stroke (mm) 86 

Connecting Rod Length (mm) 145.5 

Wrist Pin Offset (mm) 0.8 

Number of Cylinders 4 

Compression Ratio (-) 9.2 

Total Displacement Volume (L) 1.9984 

Cylinder Clearance Volume (L) 0.0609 

Firing Order 1-3-4-2 

Valvetrain specification DOHC  

Camshaft Phasing Ranges 

50° Intake/Exhaust Crank Angle 

IMOP: 436-486⁰ ATDC 

EMOP: 235-285⁰ ATDC 

Intake Charge Delivery Turbocharged and Intercooled 

Fuel Delivery Direct Injection 

Ignition System Coil-On-Plug 

Oil Cooling Block Mount Cooler 
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5.1.2 Fluids 

5.1.2.1 Fuel 

VP Racing Fuel’s C9 was the spec fuel used for testing. It represents a premium pump 
fuel, but without the variation in additives from seasonal changes and the differences in 
manufacturers. The full specifications for the fuel can be found in Appendix A. 

5.1.2.2 Oil 

The oil used for the duration of the project was 5W-30 Valvoline Advanced Full 
Synthetic, as it meets all requirements set by the manufacturer of the engine. [20] [21] 
There were no additional additives in the oil. 

5.1.2.3 Coolant 

The coolant used for the duration of the project was a 50/50 mixture of Prestone brand 
Dex-Cool and water. This coolant was also used because it is the manufacturer’s 
recommendation for this engine. [21] There were no additional additives in the coolant. 

5.1.3 Engine Controller 

To control the engine, a Bosch Motorsports MS6.3 was used. This controller is fully 
configurable and has a variety of features that allow for the testing performed. The fuel 
model used for testing was a volumetric efficiency-based speed density model with 
closed loop fueling via a Bosch LSU 4.9 lambda sensor. This model uses a combination 
of intake manifold pressure, temperature, and other engine data to estimate the air charge 
inside the cylinder for each combustion event. The amount of fuel injected for the event 
is calculated using this air charge estimate and a target lambda. 

5.1.3.1 Split Injection 

The initial plan for this project was to run split injection. However, the Bosch unit 
doesn’t have this feature. In an effort to circumvent this, the injectors were re-wired so 
that the ECU would effectively see 2 banks of 4 injectors, seen in figure 15. The injection 
timing was controlled by the phasing of these additional 4 ghost cylinders relative to the 
actual 4 cylinders on the engine. This would have allowed for a 50/50 split between 
injection pulses. While this solution worked from a hardware and calibration perspective, 
the injection duration for the speed and load run in testing proved to be too low. To meet 
the target lambda of 1.01, the injection duration was around 0.7 ms, but the factory 
injectors in the engine become unstable below a 1 ms. The end result was lambda 
variations of ±0.03, which was unacceptable. In an effort to try to retain split injection, 
the fuel pressure was lowered until lambda was stable. The resulting fuel pressure was 13 
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bar, which is far too low for proper atomization of the fuel. Because of this, split injection 
was not a viable option for testing. 

 
Figure 15: Alternative injector wiring 

5.2 Instrumentation 

5.2.1 Engine Dynamometer 

The dynamometer used for controlling the engine is an adjustable speed A/C 
dynamometer made by GE Motors. The model number is 5TKF44SDC03AQ04 and the 
max absorption for the dyno is 460 hp with a  max speed of 8,000 RPM. 

5.2.2 Test Cell Control and Low-Speed DAQ 

The core operating system for this project was NI Veristand 2016 [22]. The chassis used 
was a PXIe-1078 [23]. Veristand performed all of the core operations of the test cell such 
as controlling the dyno, switching all power to the engine, and logging all of the lower 
frequency inputs as well as the atmospheric conditions inside the cell. 
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5.2.3 In-Cylinder Pressure Transducers 

The in-cylinder pressure transducers used were a mix of AVL GH12D and PCB 115A04. 
While the transducers were mixed across cylinders, they were not changed for the 
duration of the testing. 

5.2.4 Combustion Analyzer 

CAS Redline [24] was used for combustion analysis. The encoder used to track crank 
position for this project was an H20 made by BEI Sensors (Part # XH20DB-37-SS-360-
ABZC-28V/V-SM18). The full specifications for this encoder can be determined from 
the datasheet in Appendix B. All data was taken in 1⁰ increments. 

5.3 Emissions Equipment 

5.3.1 Fast Response Analyzers 

Cambustion fast-response analyzers were used for HC and CO/CO2 [25] for the duration 
of this project. More detailed specifications can be found in Appendix C. 

5.3.1.1 Fast FID 

For high-speed HC measurements, a Cambustion HFR 500, seen in figure 16, was used. 
This allows for tracking of HC emissions on a crank angle basis and was primarily used 
to capture the rebreathing effects. This machine outputs a ppm value that was scaled to a 
0-10V output which was then fed into CAS via a BNC cable. The signal was then 
rescaled in CAS back to ppm for recording into data. One of these signals was taken at 
the port, the other after the turbine of the turbocharger, as can be seen in figure 21. 
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Figure 16: Cambustion HFR500 Fast FID 

5.3.1.2 Fast CO/CO2 

For the purposes of measuring CO and CO2, a Cambustion NDIR500 was used, seen in 
figure 17.  The fast analyzer was used because it was availably and would help indicate 
when a misfire occurred. These misfires would lead to large spikes on the CO traces, 
even if they were not detected by other means. Much like the HFR, the machine was 
configured to output a 0-10V signal and that signal was processed within CAS. 
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Figure 17: Cambustion NDIR500 Fast CO/CO2 

The calibration for both of these was according to the combustion manual. Upper and 
lower span gases were used with a zero gas to develop a linear correlation around all test 
points being analyzed. These gases can be seen in table 6. 

 
Table 6: Cambustion Span Gases 

Gas Span 

CO 1% and 5% CO 

CO2 4% and 16% CO2 

HC 600ppm and 2500ppm 

Zero N2 
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5.3.2 PM/PN 

For exhaust particle emissions measurements a TSI EEPS 3090 [26], seen in figure 18, 
was used. Only post-turbine measurements were performed. The unit was disassembled, 
cleaned, and calibrated before testing began. The primary use of the PM measurement 
was to determine the best SOI for this operating condition, more details on this are in 
section 5.7. It was cleaned again before each of the camshafts were tested. However, 
when running the longer duration camshafts, the machine repeatedly clogged almost 
immediately. Because of this, the bench was disconnected and no longer used in an effort 
to prevent damage. 

 
Figure 18: TSI EEPS 3090 

5.3.3 Horiba 5-Gas 

For the measurements used in the parameter sweeps and the verification of the Cummins 
NOx sensor, a Horiba MEXA 1600D was employed. This bench is the baseline for all 
emissions testing performed at the lab as it is an industry standard. The measurements 
available include CO, CO2, HC, NOx, and O2. 
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5.3.4 Cummins NOx Sensor 

With HC, CO, and CO2 being measured by the Cambustion benches, the only other 
desired emissions measurements were NOx and O2. For the purposes of this project, fast 
NOx was deemed to not be value added. These two factors combined with the increased 
potential for error to be introduced by using another complex machine lead to the use of 
an OEM NOx sensor from Cummins (Part # 5293295RX) which reads both NOx (ppm) 
and O2 (%). This sensor was integrated into Veristand via decoded CAN 
communications. 

To check the validity of the OEM sensor, data was taken over a cam sweep and compared 
to the Horiba 5-Gas. As can be seen in figure 19, there is a good correlation between the 
two methods of NOx measurement. The only significant difference between the two is a 
bias that is reasonably consistent throughout the sweep. This bias can be more clearly 
seen in figure 20. Because it was a consistent bias at and immediately surrounding the 
operating conditions in testing and the goal of this project was to make comparisons 
within this small region, it was deemed appropriate to use the OEM sensor. 

 
Figure 19: NOx reading of Horiba 5-Gas bench vs OEM Cummins NOx sensor 
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Figure 20: NOx reading comparison between Horiba 5-Gas bench and Cummins OEM 
NOx sensor for a lambda sweep Lines are assumed trends 

5.3.5 Probe Location 

All probe sampling locations can be seen in figure 20. 

 
Figure 21: Emissions probe locations 
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5.4 Camshaft Procurement 

The original plan for acquiring the longer duration exhaust cams was to send a stock cam 
to a large aftermarket cam supplier and have them manufacture two prototypes using 
additional data developed in sections 4.1.1 and 4.1.2. However, as it turned out, this was 
not a viable option. Because of this, a search began to find another supplier. As it turned 
out, this search was significantly more difficult than anticipated.  

There were several core issues with finding a camshaft supplier for this project. The first 
was that none of the companies contacted had any cores to grind. This left only the option 
of welding more material onto the lobes of a stock camshaft and regrinding them with the 
new lobe profiles.  After contacting many different suppliers, having Andrew’s Products 
design a camshaft that Web Cams could grind was the only viable option. Working with 
both companies was a necessity because Andrew’s cannot weld and grind the camshafts 
as needed and Web uses masters designed and manufactured by Andrew’s to grind their 
camshafts. 

While working with Andrew’s, it was discovered that there were two major issues with 
the fabrication of these cam profiles. The first of these was that the small negative RoC 
on the cams required a diameter of grinding wheel that was smaller than anything that 
Web was currently capable of using. A negative RoC is the radius of the curve the must 
be ground into the camshaft. The grinding wheel radius must be smaller than this value 
for it to be able to cut into the wheel instead of grinding away the lobe for an “external” 
curve. This “internal” curve can be seen in figure 22, where the roller wheel is contacting 
the cam lobe. Web had a new machine that would be capable of performing this operation 
within months, but this lead time was far too long for this project.  
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Figure 22: RoC diagram [27] 

The second was that there was concern about the dynamics of the valvetrain. There was 
significant jerk at the transition points between the ramps and peak lift. All of this can be 
seen in figure 23. 
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Figure 23: Acceleration curve for mid duration camshaft and stock RoC 

Fortunately, these difficulties were being communicated to the consortium during this 
search, and GM volunteered to redesign the cams to allow for the larger RoC that Web 
was capable of grinding. The change in RoC was an increase from a baseline of 101 mm 
to 150 mm on the new design. Once this data was returned to us, simulations were 
performed to verify that the change in RoC would not cause any significant changes in 
the results of the project. The first of these checks was to verify that there was no 
significant change in mass flow across the valve with the new RoC. As can be seen in 
figure 24, the mass flow is nearly line-on-line, so it was determined that there was no 
significant difference. 

 
Figure 24: Mass flow rate at exhaust valve port comparing different RoC 

After seeing insignificant changes in mass flow across the valve, the simulated LogP-
LogV diagrams for each cam design were compared. Based on the results seen in figure 
25, it was determined that there was no significant difference from the change in RoC. 
Between these two metrics, it was determined that the change in RoC had no significant 
effect on combustion or, theoretically, emissions. 
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Figure 25: LogP-LogV diagram from GT-Power to verify RoC change doesn't cause 
other issues 

After all of their work redesigning the cams, GM additionally volunteered to manufacture 
the prototypes. This meant that the cams used in testing would not have any concerns of 
the welds cracking, coming apart, interrupting testing, and potentially damaging the 
engine. 

In the end, procuring the camshafts for this project went from a simple 12-week process 
to a nearly 12-month ordeal. There were several suppliers involved, several different 
complications, and a lot of communication back and forth to find a company that could 
do the work. A short summary of this process can be seen in table 6. 
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Table 7: Camshaft procurement summary 

 

5.4.1 Camshaft Install 

The longer duration camshafts were designed with the concept that both would have a 
later EVC than stock to help with rebreathing. However, just before testing began on the 
longer duration camshafts, it was decided to match EVC as it would eliminate an 
additional variable. Upon final verification for the prototype camshafts, ECCL was not as 
expected. In an effort to match EVC as closely as possible, the two prototype cams were 
advanced by 2 teeth (15.65⁰ CA). The resulting measured valve lift for all three cams can 
be seen in figure 28. As can be seen in this plot, the stock and the 35⁰ camshaft have a 
nearly identical EVC at the home position, while the 60⁰ camshaft is slightly off due to 
the shift in ECCL because the exhaust cam cannot be advanced and is limited to the 50⁰ 
sweep being used for this project. 

Company
Lead 

Time
 Cost Capability Notes

GM
4 

Weeks
GM Donation

Can grind prototype cams 

and have cores
Slightly increased RoC

Web Cams &

Andrew’s 

Products

Comp Cams
12 

Wks
$3,000 Expressed Concerns

Comp said they had concerns, but won’t 

elaborate on what those concerns are.  

No response to many requests for an 

engineering meeting.

MegaCycle N/A Unknown Could grind small radius

Required specialized masters and 

camshafts in-hand before quoting or 

guaranteeing capability

Engine Power 

Components
Low

They have never done this cam, or one 

similar.  They don’t have any cores.

Edelbrock None
They use Comp for production runs, and 

Engine Power Components for one-off’s

Cam Motion None They do not weld, and do not have cores

Schneider 

Racing Cams
None They do not weld, and do not have cores

Crane Cams None They do not weld, and do not have cores

Brian Crower No interest Not interested in taking on this project

Crower Cams None They do not weld, and do not have cores

Oregon 

Camshafts
None They do not weld, and do not have cores

Delta Cams None They do not weld, and do not have cores

5 

Mnths
$2,100 

Claimed to be a routine 

process

Required either RoC change or extremely 

long lead time. Andrews not responsive 

for RoC change.
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As a side note, there was an issue that had to be dealt with in the Bosch software from 
advancing the camshafts. Because the cam position is measured in the ECU using a 
toothed wheel that is part of the camshaft, when the cam was advanced, so too was this 
wheel. This meant that the indexing for the camshafts no longer matched the previous 
triggering configuration and so the controller was unable to correctly position the cam. 
To fix this, a correctional offset was implemented in the software. Using this offset and 
the calibration of the controller, the camshafts had identical EVCs in their fully retarded 
position.  

 
Figure 26: Measured valve lift with the camshaft in the home position 

 
Figure 27: Measured valve lift with the camshaft the fully retarded position 
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5.5 Valve Deactivation 

To deactivate the exhaust valves, the roller followers (RFF in fig. 28) for the valves were 
removed from the engine. The hydraulic lash adjusters were replaced with units that had 
been welded shut to avoid oil pressure issues caused by the free flow of oil through the 
unwelded adjusters. To prevent these adjusters from being displaced via oil pressure and 
roaming through the engine, hold downs were made. The entire replacement system can 
be seen in figure 29. This operation was performed on every cylinder when the change 
was made. 

 
Figure 28: Valvetrain diagram [28] 
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Figure 29: Welded lash adjuster and hold down 

5.6 Operational Temperatures 

Because the project was for testing the effects at cold start, the minimum temperatures 
that could be consistently met for all testing had to be determined. The FTP-75 
requirement is for an ambient temperature between 20 and 30⁰C [4]. Because the engine 
had to be run for long periods of time and hold a constant temperature, these temperatures 
were not quite achievable. Instead, this data more accurately represent a vehicle that has 
been parked for a longer duration of time, but not quite the same as a morning startup. 
After analyzing the data from the parameterization sweeps it was determined to target the 
temperatures seen in table 7. These temperatures were then measured and controlled for 
the duration of testing. 

 
Table 8: Temperature set points 

Measurement Oil Temperature Coolant 
Temperature 

Air 
Temperature 

Set Pont 35⁰ C 35⁰ C 28⁰ C 

Oil temperature was measured with a thermocouple at  and controlled using a . Coolant 
temperature was measured with a thermocouple where the coolant exits the engine and 
controlled using a PID controller in Veristand. 
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5.7 Parameterization 

5.7.1 SOI Sweep 

Because SOI changes can have a significant effect on emissions, a sweep was run. This 
was done with EEPS employed to test for particle emissions changes and the Horiba to 
check for all other constituents. The results can be seen in figures 30-34. In these figures, 
the black line with the yellow highlighting is the point at 180⁰ BTDC, or the start of 
compression. The purple arrows at the bottom indicate the direction in which injection is 
occurring earlier in the cycle. The dotted red line is the injection angle that was chosen 
for testing, 240⁰ BTDC. For the purposes of particle mass, the objective was to find a 
minimum point on figures 30 and 31. 

 
Figure 30: PN from TSI EEPS for SOI sweep Lines are assumed trends 
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Figure 31: Particle mass from TSI EEPS for SOI Sweep Lines are assumed trends 

For the rest of the emissions, the objective was to find an SOI that was as flat as possible 
with no drastic slope in either direction. This was done in an effort to try and mitigate any 
of the effects that might exist from any errors during testing. 

Figure 32: CO from 5-Gas for particle sweep Lines are assumed trends 
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Figure 33: CO2 and NOx from 5-Gas for SOI sweep Lines are assumed trends 

 
Figure 34: HC and lambda from 5-Gas for SOI sweep Lines are assumed trends 

5.7.2 Lambda Sweep 

After SOI was determined, a lambda sweep was performed. Again, the objective was to 
minimize the sensitivity on either side of the set point. As can be seen in figure 35, there 
is a drastic switching effect around ℷ=1, so that was not an option, with a significant 
decrease in CO2 and NOx as the fuel mix becomes richer. Additionally, too drastic of a 
change towards lean operation causes a significant decrease in CO2 and NOx. 
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Figure 35: CO2 and NOx for lambda sweep Lines are assumed trends 

As shown in figure 36, fuel-rich operation proves to have a significant positive slope in 
HC and CO emissions, as expected, due to the increase in the fuel that has no oxygen to 
react with. Lean operation changes CO and THC far less, so that was not as much of a 
concern. Because of this, the final chosen value for testing can be seen in figures 35 and 
36 as a dashed red line at ℷ=1.04. 
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Figure 36: HC and CO for lambda sweep Lines are assumed trends 



www.manaraa.com

45 

6 Results 

To better understand the data and the physics behind it, the analysis was broken down 
into three major parts. The first is the comparison between single and dual exhaust valves 
with the stock camshaft. The second is the comparison between the different exhaust cam 
durations. Finally, the combined effects were examined.  

6.1 Rate of Exhaust Enthalpy 

Enthalpy was the metric used to measure the exhaust energy that could be transferred into 
the catalyst for light off. This was because it takes both temperature and mass flow into 
account which are both measured and can be controlled to some extent. Changing mass 
flow would result in a change in energy rate and changing the temperature changes the 
rate of heat transfer. A metric such as exergy would be very difficult, if not impossible to 
calculate without a catalyst to use for measuring the temperature. The rate of exhaust 
enthalpy was expected to increase with both the use of valve deactivation and the longer 
duration camshafts. In general, this was the case, however, the reasoning behind the 
increase was not as expected. 

6.1.1 Single valve vs Dual valve 

6.1.1.1 CA50 

As a baseline, a sweep of only combustion timing can be seen in figure 37. This sweep 
was with the factory camshaft in the home position and in the dual valve configuration. 
As expected, the exhaust enthalpy increases as combustion phasing is retarded. This is 
due to several factors. The first is that the later CA50 causes the engine to become less 
efficient, and so more fuel energy is required to meet load. Second, with the drop in 
expansion work being done comes an increase in EGT. So, there is an increase in mass 
flow and temperature, leading to an increase in exhaust enthalpy. 
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Figure 37: CA50 Sweep with stock cams without cam retard Lines are assumed trends 
and red line represents current COV limits 
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When comparing single valve and dual valve operation on a CA50 basis, there is a slight 
increase in the rate of exhaust enthalpy that comes with valve deactivation. However, this 
difference isn’t as great as expected. The differences between the two modes of operation 
become more evident as cam position becomes more retarded, but the net effect of 
retarding the cam is generally a negative one, seen in figure 38. 

 
Figure 38: Exhaust enthalpy rate comparison for stock cam single valve and dual valve 
operation with CA50 as x-axis. Top: Camshaft in home position Middle: Camshaft 
retarded by 25⁰ Bottom: Camshaft retarded by 50⁰ Lines are assumed trends and red 
line represents current COV limits 

6.1.1.2 COV IMEP 

In an attempt to better relate the results to actual criteria for the operation of engines in a 
consumer’s vehicle, the x-axis was changed to COV of IMEP, seen in figure 39. This is a 
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standard metric used to gauge the NVH levels of the engine, calculated using equation 2, 
and so it is one of the constraints for the final implementation of any technology in a 
vehicle. Perhaps more importantly though, the change of x-axis makes the overall effect 
of valve deactivation more clear. 

 COV IMEP = 100 ×
σIMEP

x̅IMEP
 (2) 

 

 
Figure 39: Exhaust enthalpy on a COV of IMEP basis for stock cam single valve and dual 
valve operation. Top: Camshaft in home position Middle: Camshaft retarded by 25⁰ 
Bottom: Camshaft retarded by 50⁰ Note: Low exhaust enthalpy and high COV point 
for dual valve operation is due to the engine approaching misfire limit when 
approaching MBT. Lines are assumed trends and red line represents current COV 
limits 
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6.1.2 Exhaust Enthalpy 

Equation 3 is the equation for the exhaust enthalpy rate. Going forward, this equation will 
be broken into its individual components and there will be a comparison made for valve 
deactivation. For the purposes of this study, the Pv term was considered to be constant as 
the exhaust was at atmospheric pressure and the specific volume was not measured. 

 

𝐻̇ = 𝑐𝑝𝑚̇𝑇 + 𝑃𝑣 
 

𝑐𝑝 = Specific heat of the exhaust stream 
𝑚̇ = Mass flow of the exhaust stream 
𝑇 = Post-turbine EGTs for exhaust stream 
𝑃 = Pressure of the exhaust stream 
𝑣 = Specific volume of the exhaust stream 

(3) 

6.1.2.1 Temperature 

When initially examining EGTs, the first location of concern was post-turbine. As can be 
seen in figure 40, the results at this location support the initial theory that the smaller 
wetted area in the port contributes to less heat transfer. However, when examining the 
port EGTs, it can be seen that this is not the case. In fact, the temperatures are actually 
lower for the configuration with the deactivated valve. After further investigation, it was 
discovered that this is the result of several factors. 



www.manaraa.com

50 

 
Figure 40: Left- Post-turbine EGTs Right- Port EGTs Top: Camshaft in home position 
Middle: Camshaft retarded by 25⁰ Bottom: Camshaft retarded by 50⁰ Lines are assumed 
trends and red line represents current COV limits 
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6.1.2.1.1 Heat Transfer 

First and foremost, the effects of the wetted area do not contribute in the way that was 
anticipated. To show this, the base equation for heat transfer seen in equation 4 will be 
broken into its individual components. 

 

𝑄 =  ℎ𝐴𝛥𝑇 

ℎ = Heat transfer coefficient 

𝐴 = Wetted area of port for heat transfer 

𝛥𝑇 = Temperature difference from the exhaust stream to the port wall 

(4) 

 

GT-Power simulations were used to calculate many of the factors involved in this heat 
transfer. One of the things that was changing unexpectedly was the heat transfer 
coefficient, as seen in figure 41. 

 
Figure 41: GT-Power heat transfer coefficient comparison 

To better understand why this coefficient was changing so drastically, one of the 
fundamental ratios in fluid heat transfer was used, the Nusselt number. Its relationship 
with the heat transfer coefficient can be seen in equation 5. The Nusselt number itself is 
related to both the Reynolds number and the Prandtl number in equation 6. 

 Nu = hc
D

k
 (5) 

 Nu = 0.023(Re)0.8Pr0.4 
 

(6) 
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Breaking the Reynolds and Prandtl numbers down into the components that make them 
up and substituted them into equation 6. Setting this new equation equal to equation 4 and 
rearranging yields equation 7. 

 𝒉𝒄  =  0.023(𝑘/𝐷)(
𝜌𝑉𝐷

𝜇
)0.8(

𝐶𝑃𝜇

𝑘
)0.4  (7) 

After looking through each variable in equation 7 in GT-Power, it was deemed 
appropriate to assume constant density, viscosity, and specific heat. This was because the 
changes for each of these was significantly smaller, on a percentage basis, when 
compared to changes in velocity. By assuming these constants, using equation 7 for each 
valve configuration, and rearranging the two, the end result is equation 8.  

 
𝒉𝑐,1 𝑉𝑎𝑙𝑣𝑒 

𝒉𝑐,2 𝑉𝑎𝑙𝑣𝑒
= (

𝑉1 𝑉𝑎𝑙𝑣𝑒

𝑉2 𝑉𝑎𝑙𝑣𝑒
)

0.8

 (8) 

Using the calculated values for velocity in GT-Power from the case with the cam in the 
park position and the engine operating at MBT, and rearranging the resulting equation 
leads to equation 9, below. The end result is that the heat transfer coefficient for the 
single valve configuration is actually higher than that of the dual valve configuration. 
Based on this calculation, the heat transfer for the single valve configuration is roughly 
41% higher in the area of the port before the septum. Unfortunately, while the Prandlt 
number meets the requirements for this specific correlation, the Reynolds number is a bit 
low. However, the end result still matches the results seen in the GT-Power simulation. 

 𝒉𝑐,1 𝑉𝑎𝑙𝑣𝑒 = 1.41𝒉𝑐,2 𝑉𝑎𝑙𝑣𝑒 (9) 

Additionally, the area of the port is not actually half and there are several reasons for this. 
The first is that the flow itself will cause a low-pressure area in the dead port. This low-
pressure area will draw in some of the hot exhaust gases past the septum, increasing the 
area for heat transfer. The second is that the dead port will also be slightly cooler in 
temperature, further lowering the pressure and drawing in exhaust gases, increasing the 
effective heat transfer area again. Last, and this is somewhat definition-dependent, even if 
this low-pressure area did nothing, the most significant area of the port is after the 
septum, where the flow paths for each exhaust valve combine into a single larger exhaust 
flow path, and so the overall area of the port still wouldn’t be cut in half, but more 
comparable to a 1/3 decrease in area. The diagram in figure 42 is helpful in visualizing 
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the effect. As a reference point, the dashed red line represents a plane that would divide 
the port in half. 

 
Figure 42: Diagram of port area after valve deactivation 

6.1.2.1.2 Increased Expansion Work 

The second factor is that the deactivated valve chokes flow during the blowdown process. 
This choked flow leads to further expansion of the exhaust gases, and the result is lower 
EGTs. This expansion can be seen in the highlighted circle in figure 43. The operating 
point used in this figure is for one of the more extreme cases of combustion, but the 
effects are seen in all cases. 
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Figure 43: LogP-LogV Diagram of experimental engine for fully  exhaust cam and a 
CA50 at MBT 

However, even with all of these factors contributing to lower EGTs at the port, the single 
valve configuration was surprisingly better at maintaining higher EGTs post-turbine, 
where the catalyst is positioned, seen in figure 44. This is likely due to the occurrence of 
post-oxidation, as there were unburned HC in the exhaust stream and the temperature of 
the stream was significantly higher than the auto-ignition temperature of the fuel. This 
leads to a further decrease in temperature drop in the exhaust stream. 
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Figure 44: EGT drop from port to post-turbine Lines are assumed trends 

6.1.2.1.3 EGT Measurement 

Lastly, the measurement of the EGTs is slightly skewed. The port thermocouples only  
have exhaust flowing across them for a portion of the cycle. During the other portion of 
the cycle the thermocouples are actually cooling. The data rate used for recording in 
Veristand was not high enough to measure this fluctuation, and so the port temperatures 
were averaged within each data set. 

This effect can also be seen in the comparison between the port and post-turbine EGTs. 
The post-turbine thermocouple has a nearly constant stream of exhaust gases flowing 
across it and so it does not have the cooling portion of the cycle that the port 
thermocouples experienced. 

6.1.2.2 Mass Flow Rate 

Mass flow rate is a critical component in the exhaust enthalpy rate as the rate of exhaust 
enthalpy scales directly with mass flow rate. One of the benefits to single valve operation 
is the increase in mass flow. This increase can be seen in figure 45. 
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Figure 45: Mass flow comparison for stock cam single valve and dual valve operation. 
Top: Camshaft in home position Middle: Camshaft retarded by 25⁰ Bottom: Camshaft 
retarded by 50⁰ Lines are assumed trends and red line represents current COV limits 
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This increase in mass flow is largely contributed to three different effects seen in figure 
46. Zone 1 shows the decrease in curtain area causing higher cylinder pressure during the 
exhaust stroke, which increases pumping work. Zone 2 shows the restriction of backflow 
into the cylinder, decreasing cylinder pressure and increasing pumping work in the early 
part of the intake stroke. This lower pressure also indicates lower in-cylinder residuals. 
Zone 3 shows how the decrease in residuals leads to the need to increase throttling to 
mean the target load, further increasing pumping losses. 

  
Figure 46: LogP-LogV with cam retarded by 50⁰ and CA50 of 60⁰ to show pumping 
losses 

6.1.2.3 Specific Heat 

Calculating the specific heat for the flow is relatively simple. In equation 10, the mass 
fraction of each constituent is multiplied by the specific heat for that constituent. The sum 
of each of these different values is the specific heat for the exhaust flow. 

 𝒄𝒑 = ∑ 𝒙𝒊𝒄𝒑,𝒊 (10) 

In this study, most of the contributing constituents were directly measured. However, 
H2O and H2 could not be directly measured, and so were calculated using the water gas 
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shift reaction found in equation 4.63 of [1]. The constant K used was 3.5, as it is a 
commonly accepted constant for this equation to be valid. For the HC term, it was 
assumed that this was the same molecular makeup as the fuel being used, as this is also a 
common practice. 

6.1.2.4 Residuals 

As previously alluded to, the key to all of these effects is the changes in in-cylinder 
residuals. Because residuals cannot be measured directly in the experiment, they were 
calculated using GT-Power. The results can be seen in table 8. In this table, the red and 
green represent a relative scale of residuals with dark red indicating the highest relative 
residuals and green the lowest. The third section of the table the difference between dual 
valve and single valve operation, with red indicating an increase with the switch to single 
valve and blue indicating a decrease. When the cam is in the home position, the residuals 
for single valve are actually slightly higher than those for the dual valve configuration. 
This is a reflection of figure 45 when the mass flow for the two configurations was 
similar. However, once the cam is retarded to 25⁰ and 50⁰, the results become much more 
clear. The residuals for dual valve have increased by over 13%. 

 
Table 9: Cam Residual Comparison. All Values are in % The green and red plots 
correspond to lowest and highest values, respectively. The blue and red colors in the delta 
table correspond to decreased residuals from dual to single valve and increased residuals, 
respectively. Dual valve operation with stock, 35⁰ duration increase, and 60⁰ duration 
increase 
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6.1.3 Combined Effects of Port Deactivation and Longer Duration Camshaft on 
Rate of Enthalpy 

As can be seen in figure 47, there is generally an increase in the rate of enthalpy with the 
60⁰ camshaft and single valve operation. The single valve configuration is slightly better 
due to the reasons previously examined. The longer duration camshaft provides a slight 
increase in the rate of exhaust enthalpy because the mass flow is slightly higher overall 
when compared to the stock camshaft, seen in figure 48. 

Additionally, as cam duration increases, the in-cylinder residuals decrease. This is 
especially evident with the use of the deactivated valve, and is presented in table 9, an 
expansion of table 8 used to compare all operational configurations and their respective 
residuals. In fact, with the valve deactivated and the 60⁰ camshaft, there is a 42% 
reduction in residuals with this configuration. This leads to an increase in combustion 
temperatures and, theoretically, higher EGTs. However, as seen previously, the single 
valve configuration leads to increased expansion work, so the EGTs are relatively similar 
between the two.  
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Figure 47: Enthalpy comparison for single valve and dual valve with the stock and 60⁰ 
camshafts Top: Camshaft in home position Middle: Camshaft retarded by 25⁰ Bottom: 
Camshaft retarded by 50⁰ Lines are assumed trends and red line represents current 
COV limits 



www.manaraa.com

61 

 
Figure 48: Mass flow comparison for single valve and dual valve with the stock and 60⁰ 
camshafts Top: Camshaft in home position Middle: Camshaft retarded by 25⁰ Bottom: 
Camshaft retarded by 50⁰ Lines are assumed trends and red line represents current 
COV limits 
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Table 10: Residuals comparison for all configurations All values are in %. The green and 
red plots correspond to lowest and highest values, respectively. The blue and red colors in 
the delta table correspond to decreased residuals from dual to single valve and increased 
residuals, respectively. Left: dual valve operation with stock, 35⁰ duration increase, and 
60⁰ duration increase Middle: single valve operation with stock, 35⁰ duration increase, 
and 60⁰ duration increase Right: Difference between dual valve and single valve 
operation with stock, 35⁰ duration increase, and 60⁰ duration increase 

 

6.2 Emissions 

6.2.1 Single valve vs. Dual valve 

While enthalpy increases with the deactivation of a valve, so to do some of the measured 
emissions. Figure 49 shows the increase in HC for different configurations. For the 
earlier cam timings, the single valve configuration is worse from an emissions 
perspective. This is because the curtain area of the single valve is restricting the 
rebreathing that would normally draw the HC back into the cylinder and completing the 
combustion process with the previously unburned HC. For the later cam timing, however, 
this is not necessarily the case. This is because the COV for the dual valve configuration 
is much higher with the later cam timing than it is with the earlier cam timing and is even 
greater than the single valve configuration at times. 
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Figure 49: HC emissions comparison for single valve and dual valve with the stock 
camshaft Top: Camshaft in home position Middle: Camshaft retarded by 25⁰ Bottom: 
Camshaft retarded by 50⁰ Lines are assumed trends and red line represents current 
COV limits 
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On the other hand, CO is lower for most of the cases with the single valve configuration, 
seen in figure 50. There is generally a trade-off between HC and CO though because the 
reaction is being cut short during different stages of combustion. This means that the 
reaction is not only stopping before the constituents reach the point of becoming CO2, it 
is stopping before the fuel fully dissociates and the carbon begins to combine with the 
available oxygen atoms. 

 
Figure 50: CO emissions comparison for single valve and dual valve with the stock 
camshaft Top: Camshaft in home position Middle: Camshaft retarded by 25⁰ Bottom: 
Camshaft retarded by 50⁰ Lines are assumed trends and red line represents current 
COV limits 
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NOx appears similar between the two configurations in figure 51, but this is generally an 
artifact created by the use of COV on the x-axis. The total NOx output for similar set 
points is similar between the two, but the single valve configuration is operating at a 
lower COV, and so the values appear to be higher. The overall trend also matches the 
residuals trend seen in table 10 because the decrease in residuals leads to a higher 
combustion temperature and, therefore, more NOx is formed. This can be seen in figure 
52. 

 
Figure 51: NOx emissions comparison for single valve and dual valve with the stock 
camshaft Top: Camshaft in home position Middle: Camshaft retarded by 25⁰ Bottom: 
Camshaft retarded by 50⁰ Lines are assumed trends and red line represents current 
COV limits 
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Figure 52: NOx emissions comparison for single valve and dual valve with the stock 
camshaft on a CA50 basis Top: Camshaft in home position Middle: Camshaft retarded 
by 25⁰ Bottom: Camshaft retarded by 50⁰ Lines are assumed trends 
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6.2.2 Combined Effects of Port Deactivation and Cam Duration Increase on 
Emissions 

As seen in figure 53, HC is higher for the longer duration camshaft at earlier cam timings. 
The longer duration camshaft has an earlier EVO, which effectively cuts combustion 
short. This results in an increase in unburned fuel, resulting in an increase in HC mass 
flow from the engine. Once the camshaft was retarded into the later combustion phases, 
this becomes less of a factor, as EVO has been moved back towards where the stock cam 
was at earlier cam timings. 

Much like HC, CO is increased with the longer duration camshaft. Figure 54 shows this 
clearly, especially at earlier cam timing. In fact, the reasoning for this is the same. The 
earlier EVO cuts combustion short and the reactants that were in the CO state have been 
essentially trapped in this mid-reaction state. 

NOx, on the other hand, is very similar between the two camshafts, with an increase in 
NOx for the stock camshaft at the extreme points, shown in figure 55. This is likely due 
to the combustion process ending with the earlier EVO and the resulting combustion 
temperatures being lower for the longer duration camshaft. 
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Figure 53: HC emissions comparison for single valve and dual valve with the stock and 
60⁰ camshafts Top: Camshaft in home position Middle: Camshaft retarded by 25⁰ 
Bottom: Camshaft retarded by 50⁰ Lines are assumed trends and red line represents 
current COV limits 
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Figure 54: CO emissions comparison for single valve and dual valve with the stock and 
60⁰ camshafts Top: Camshaft in home position Middle: Camshaft retarded by 25⁰ 
Bottom: Camshaft retarded by 50⁰ Lines are assumed trends and red line represents 
current COV limits 
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Figure 55: NOx emissions comparison for single valve and dual valve with the stock and 
60⁰ camshafts Top: Camshaft in home position Middle: Camshaft retarded by 25⁰ 
Bottom: Camshaft retarded by 50⁰ Lines are assumed trends and red line represents 
current COV limits 
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6.3 Mass Fraction Burn Analysis 

With combustion occurring as late as it is, analysis was performed to ensure that the 
CA50 being calculated in real time by CAS was accurate. This was done by post-
processing the cylinder pressure data and comparing it to the CAS data in a cross plot. 
This verification was only done with the stock camshaft. The results can be seen in figure 
56. 

 
Figure 56: CAS CA50 comparison with post-processed CA50 Top: Dual valve operation 
Bottom: Single valve operation Lines represent perfect correlation 
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However, there is an issue with calculating MFB for the longer duration camshafts. It was 
initially planned that with the longer duration camshafts EVO could be pushed into the 
combusting mixture, but by matching EVC across all camshafts, this option of pushing 
EVO into combustion became a requirement. This is especially true for the 60⁰ camshaft. 
Referring back to figures 26 and 27, it can be seen that EVO for the 60⁰ camshaft can be 
as early as 57⁰ ATDC, or as late as 102⁰ ATDC. Figure 57 is data from the engine under 
testing conditions with the stock camshaft in the park position to help show how 
variances in CA50 effect COV and CA90. In figure 57 it can be seen that for a CA50 of 
30⁰, CA90 is 73⁰. This means that the 60⁰ camshaft interrupts the combustion event for all 
test points shown. The result is that combustion phasing becomes very difficult to 
measure or estimate, and so there was some error in the combustion phasing calculations 
for some points with the longer duration camshafts. 

 
Figure 57: Home position, stock cam, dual valve operation CA50 sweep Lines are 
assumed trends 
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7 Conclusions 

In the end, there are two sets of conclusions that can be made. One is for the comparison 
of single and dual valve operation and the other is on the effects of the duration increase 
of the exhaust cam. For the single and dual valve comparison, the results of the single 
valve operation were: 

• The decrease in heat transfer in the dead port was partially offset by an increase in 
heat transfer in the live port (increased h coefficient) 

• Mass flow rate increased (increasing the rate of enthalpy) due to increased 
pumping work early and late in the exhaust stroke resulting from reduced curtain 
area 

• The decreased residual of single valve operation would enable later CA50 for a 
given COV of IMEP 

o The later CA50 would further increase EGT, while requiring increased 
mass flow to meet the load 

• The downside of the reduced rebreathing is a significant increase in HC 

• Bottom Line: 1-Valve does increase the rate of enthalpy slightly, but at the cost 
of increased engine out HC 

For the increase in cam duration: 

• As expected, longer cam duration (at fixed EVC) leads to earlier EVO and an 
increased rate of enthalpy on a CA50 basis 

• Early EVO increases the sensitivity between normal combustion variation and 
extracted work and can end combustion early, causing an increase in engine-out 
emissions 
o Retarding the cam doesn’t help, as residual is increased, driving an increase in 

combustion variation 
• Bottom Line: COV is inherently higher at all cam timing with the long duration 

cam, therefore on a COV basis there is only a slight increase in the rate of 
enthalpy 

 

Table 10 is a summary of everything found in this project. The arrows indicated a relative 
difference between the new configuration and the stock camshaft. Green arrows means 
either an increase in the rate of enthalpy or a decrease in emissions, which is the desired 
effect. Red arrows indicated the opposite. A single arrow represents a smaller change and 
dual arrows represents a larger change. The blue boxes represent no change. 
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Table 11: Final summary of results 
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8 Future Work 

For future iterations of this project, there are several routes that could be taken: 

• Integration of a system similar to FIAT / Schaeffler “UniAir” technology or 
Koenigsegg’s Freevalve technology to allow an increased resolution for testing 
different valve activation configurations 

• Test the engine under transient conditions to better represent the operating 
conditions of the FTP-75 and real world operation 

• Test with as late of an EVC as possible to help increase rebreathing potential for 
the longer duration camshafts. This would potentially recapture HC and decrease 
engine-out HC when the catalyst is cold and non-functional 

• More in-depth analysis of higher COV operational conditions as better NVH 
damping allows for the use in application. This would allow for the effects of this 
study to be drastically increased. 
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Appendix A: Fuel Properties 
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9 Appendix B: Crank Position Encoder 
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10 Appendix C: Cambustion Fast Analyzer Specifications 

Figure 58: Specifications for Cambustion Fast Analyzers [21] 
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11 Appendix D: Copyright Documentation 

11.1 Permission to use screen images and plots from GT-Power and GT-
Post software produced by Gamma Technologies Incorporated 
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11.2 Permission to use Equation 1, Table 1, and Figure 2 from [8] 
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11.3 Permission to use the image from [27] 
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11.4  Permissions to use Figures 3, 4, 6, 7, 28 
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